HERAB Fast Control System

Master Module

Author: Gerd Hochweller, Peter Gasiorek

1 GENERAL REMARKS

1.1 DATA FILES FOR PROGRAMMABLE LOGIC

2 VME INTERFACE

- 2.1 VME INTERFACE CONFIGURATION
 - 2.1.1 Common Part
 - 2.1.2 IO MENU Specifications
 - 2.1.3 AM CODE MENU Specifications
- 2.2 VME ADDRESSES

3 CONTROL BITS

4 DAUGHTER COMMANDS

- 4.1 DAUGHTER COMMAND FORMAT
- 4.2 COMMAND CODES

5 SHARC-LINK

- 5.1 SHARC WORD FORMAT
- 5.2 TRIGGER CODES

6 FRONT PANEL CONNECTORS

- 6.1 FIRST LEVEL TRIGGER CONNECTOR (FLT)
- 6.2 SHARC LINK CONNECTOR (SHA)
- 6.3 LEMO CONNECTORS
 - 6.3.1 Input Signals
 - 6.3.2 Output Signals
- 6.4 BACKPLANE CONNECTOR (P2)
 - 6.4.1 Fiber Link Data Word

7 REVISION HISTORY

1 General Remarks

- The module requires a VME address range of 2048 bytes.
- All VME accesses are long word accesses (D32).
- All VME accesses use the standard address mode (A24).
- The VME base address (bits 23...11) is fixed within a PAL and therefore not switchable. If not specified otherwise the base address is **0x010000**.
- There is no arbitration between the incrementation and the readout of the statistics and histogram counters. If the hardware logic generates an incrementation command during the VME readout cycle the readout result is unpredictable.
- Writing (via VME) into the histogram memory should only be used for testing and resetting the memory. Write commands during run time may cause unpredictable results.
- The control registers are readable via VME. When reading a short (8-bit) register the unused bits (31...9) are forced to zero by the hardware.
- To obtain a correct result in reading the BX-TAG counter the high order part must be handled first.
- The module uses two slots in the VME crate.
- Power consumption: ~ 1.2 A @ 5 V.
- The XILINX chip XC4025E at U18 contains only the statistics counters, the histogram memory, the BX-TAG counter and the complete SHARC link control. The chip is **not** necessary for the basic features of the fast control system and may be omitted in the test setup versions of the module for cost reasons.

 The version of the two XILINX chips can be read. The actual versions are LOGIC: 9
 STATISTICS (if supported): 4

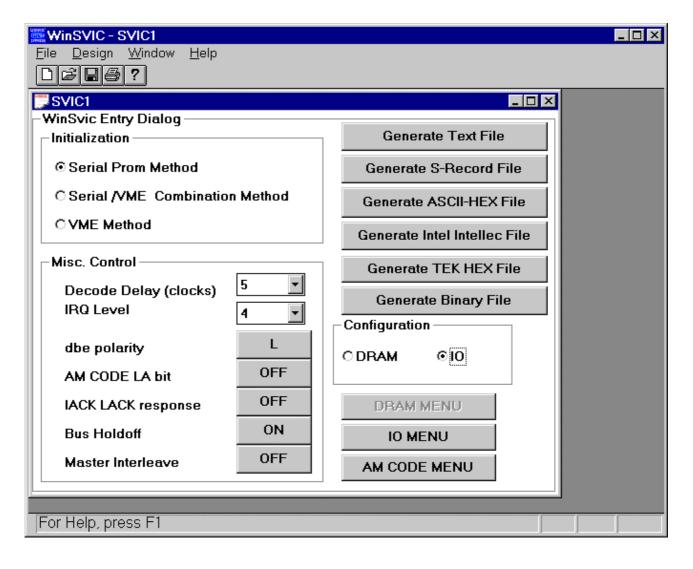
STATISTICS (if supported): 4

• To minimize distorsions in the distribution of the BX pulse a separate differential driver for each fiber transmitter module is used. To easily distribute these point-to-point signals together with the bus signals a special mezzanine backplane has been developed (board number FEA 6812).

1.1 Data Files for Programmable Logic

The latest versions of the data for the programmable logic chips can be found in the following files:

	Chip	Position
VME configuration	ATMEL AT17E65	FEA_VME_P1
VME baseaddress	AMD PALCE22V10H-7JC/5	U22
timing	AMD MACH211-7JC	U13
fpga logic (prom 0)	ATMEL 17E256	U31
fpga logic (prom 1)	ATMEL 17E256	U30
fpga statistics (prom 0)	ATMEL 17E256	U12
fpga statistics (prom 1)	ATMEL 17E256	U11


2 VME Interface

2.1 VME Interface Configuration

To access the VME bus the standard FEA mezzanine boards

'FEA-VME-P1' and 'FEA-VME-P2' are used. The modules have to be configured via a serial EEPROM ACTEL 'AT17E65' To generate the configuration data the program 'WinSVIC' (Cypress) has to be used.

2.1.1 Common Part

2.1.2 IO MENU Specifications

The Region 1 (input signal REG0_) is used for all VME accesses:

IO MENU			×
CS Polarity	CS Pattern Acti	vation —	
Bit H/L	Region	Pattern	DBE assert time (clocks)
CS0 L	1 • CS0	1	12 💌
CS1 L	CS1	0	note: (for CS Pattern)
CS2 L	CS2	0	a "1" -> active
CS3 L	CS3	0	a "0" -> inactive
CS4 L	CS4	0	
CS5 L	CS5	0	
Canc	el	(ок

2.1.3 AM CODE MENU Specifications

The control command (Region 1) uses the A24 / D32 mode (AM codes '39' and '3D'):

AM Code dialog	\sim
AM Code (IO MODE) access enables	-Special AM code enables
Region 1 ▼ note: a *1* -> enable 0 BLT mode (MBLT_BLT) 1 DATA access Set All 1 USER access (non priv) 0 PROGram access 1 SUPERvisory access 0 A64 0 A32 0 A40 1 A24 1 LONGword access	Region O CR/CSR enable O O CU2 enable O O CU1 enable O Cu2 enable O Cu2 enable O Cu2 enable O Cu2 enable
OK CANCEL	

2.2 VME Addresses

VME address (BA+)				
10 9 8 7 6 5 4 3 2	+X''	READ	WRITE	BITS
000000	00	latest accept	latest accept	8
000001	04	fifo depth	fifo depth	8
000010	08	readout duration	readout duration	14
000011	0C	buffer delay	buffer delay	8
000100	10	control bits	control bits	8
000101	14	trigger offset	trigger offset	8
000110	18	random factor	random factor	32
000111	1C	daughter command	daughter command	32
001000	20		reset FLT counter	-
001001	24		VME handshake	-
001010	28		trigger at phys BX	-/8
001011	2C			-
001100	30	version LOGIC		8/-
001101	34			-
001110	38			-
001111	3C			-
010000	40	total inh cnt	reset counter	32/-
010001	44	FP-INH inh cnt	reset SHARC link	32/-
010010	48	VME-INH inh cnt		32
010011	4C	BUF-DEL inh cnt		32
010100	50	BUF-OVFL inh cnt		32
010101	54	FLT-OVFL inh cnt		32
010110	58			-
010111	5C	version STAT		8/-
011000	60	BX-TAG high	BX-TAG high	32
011001	64	BX-TAG low	BX-TAG low	32
011010	68			-
011011	6C			-
011100	70			-
011101	74			-
011110	78			-
011111	7C			-
1 x x x x x x x x	4007FC	histogram data	histogram data	32

VME base address (bits 2311)
used bits
don't care (not decoded)
inhibited by front panel signal
inhibited by VME controlled register
inhibited by buffer delay
inhibited by readout buffer overflow
inhibited by FLT time overflow
number of rejected triggers (without FLT time overflow inhibits)

3 Control Bits

BIT	
X'01'	Overflow Scheme
X'02'	TRIG-ENABLE (forward trigger)
X'04'	ENABLE RANDOM TRIGGER
X'08'	
X'10'	
X'20'	
X'40'	
X'80'	Readout Buffer Overflow (read only)

Overflow Scheme:	0:	use VME or LEMO handshake signa	1
------------------	----	---------------------------------	---

1: use the readout duration register

4 Daughter Commands

4.1 Daughter Command Format

The 32-bit daughter command word has the following format:

3124	2316	158	70
COMMAND	DATA	DAUGHTER	CLUSTER

CLUSTER: cluster number (0...63), '0' means 'all clusters'
DAUGHTER: daughter number (0...63), '0' means 'all daughters of the enabled cluster(s)
DATA: command dependent data
COMMAND: daughter command code (1...7)

4.2 Command Codes

Daughter command codes and related data ('TP' = 'test pulse'):

COMMAND CODE	COMMAND	DATA
0	Latch and reset FLT count (CAN)	
1	issue TP	TP delay(0255)
2	load strobe pattern	strobe pattern (0255)
3	toggle strobe	toggle pattern (0255)
4	load BX delay	BX delay(0255*.5ns)
5	load BX offset	BX offset (07)
6	load trigger mask	trigger mask (0255)
7	load TP trigger data	TP data

trigger mask: X'80': hardware trigger (LEMO 4) **X'40'**: hardware trigger (LEMO 3) **X'20'**: hardware trigger (LEMO 2) **X'10'**: hardware trigger (LEMO 1) x'08': TP trigger X'04': software trigger (VME) **X'02'**: random trigger X'01': FLT accept trigger **TP data:** X'80': disable test pulse backplane **X'40'**: disable test pulse frontplane **X'20'**: enable automatic test pulse generation (at BX = 0) X'10':--X'08':\ **X'04':** \ TP Trigger BX Offset **X'02':** / (0...15 * 96 ns) X'01':/

5 SHARC-Link

For each accepted event (except for the events automatically generated by a test-pulse command) two words (48-bits each) will be sent into the SHARC-Link.

5.1 SHARC Word Format

4744	4340	3936	3532	3128	2724	2320	1916	1512	118	74	30
	=		=		BX-	TAG					
0	0	0	TCOD	PHY	S-BX	FLT	-BX		FL	Т.	

BX-TAG:	BX-counter event tag
FLT:	FLT-number
FLT-BX:	event BX-number (from FLT)
PHYS-BX:	matching physical BX-number
TCOD:	trigger code

The 24 nibbles will be transferred (high-order first) with a transfer rate of 20 MHz , i.e. the total transfer time for the two words is ~ $1.2 \,\mu$ s.

To allow peak trigger rates the SHARC-Link transmitter logic contains a FIFO which can hold up to 16 events. If an event occurs and the FIFO is full the event will be skipped.

Trigger Code	Event Type
X'0000'	FLT-ACCEPT trigger
X'0001'	
X'0010'	software trigger (VME)
X'0011'	
X'0100'	hardware trigger (LEMO 1)
X'0101'	hardware trigger (LEMO 2)
X'0110'	hardware trigger (LEMO 3)
X'0111'	hardware trigger, not clipped (LEMO 4)
X'1000'	FLT-ACCEPT trigger + random trigger
X'1001'	random trigger
X'1010'	software trigger (VME) + random trigger
X'1011'	
X'1100'	hardware trigger (LEMO 1) + random trigger
X'1101'	hardware trigger (LEMO 2) + random trigger
X'1110'	hardware trigger (LEMO 3) + random trigger
X'1111'	hardware trigger (LEMO 4) + random trigger

5.2 Trigger Codes

6 Front Panel Connectors

6.1 First level Trigger Connector (FLT)

The FLT connector is a standard 2*13 pin ,Low Profile Header' (e.g. 3M-3593-5002).

The (differential) input signals are terminated by 100 Ω resistors and received by differential line receivers AM26LS32.

The (differential) output signal is driven by a differential line driver AM26LS31.

The differential signals use positive true logic, i.e. the signal is 'true' if SIG = 'high', $SIG^* = 'low'$.

Pin	Signal	Pin	Signal
1	GND	2	GND
3	BX-FLT0	4	BX-FLT0*
5	BX-FLT1	6	BX-FLT1*
7	BX-FLT2	8	BX-FLT2*
9	BX-FLT3	10	BX-FLT3*
11	BX-FLT4	12	BX-FLT4*
13	BX-FLT5	14	BX-FLT5*
15	BX-FLT6	16	BX-FLT6*
17	BX-FLT7	18	BX-FLT7*
19	GND	20	GND
21	FLT-ACCEPT	22	FLT-ACCEPT*
23	FLT-HANDSHAKE	24	FLT-HANDSHAKE*
25	GND	26	GND

6.2 SHARC Link Connector (SHA)

The SHA connector is a standard 2*7 pin ,Low Profile Header' (e.g. 3M-3598-5002). The (differential) output signals are driven by differential line drivers DS90C031. The (differential) input signal is terminated by a 100 Ω resistor and received by a differential line receiver DS90C032.

Pin	Signal	Pin	Signal
1	LD2	2	LD2*
3	LD1	4	LD1*
5	LD0	6	LD0*
7	LD3	8	LD3*
9	LCLK	10	LCLK*
11	LACK	12	LACK*
13	GND	14	GND

6.3 LEMO Connectors

Standard LEMO connectors (DESY 26217) are being used for a few test and control signals.

6.3.1 Input Signals

The following inputs are TTL signals and terminated with 51 Ω .

BXP: Bunch crossing signal ($\approx 10 \text{ Mhz}$)

FBXP: 'First bunch' marker (≈ 47 Khz)

The following input signals are true if low and pulled up to VCC by a 10 K Ω resistor.

TRG1:	hardware trigger 1, one trigger / pulse
TRG2:	hardware trigger 2, one trigger / pulse
TRG3:	hardware trigger 3, one trigger / pulse
TRG4:	hardware trigger 4, generates triggers as long as input is low
HSH:	hardware handshake signal
FLT-DIS:	disable first level trigger pulses

6.3.2 Output Signals

All output signals are available as TTL pulses (low true) and as NIM pulses.

BX-pulse
FLT-ACCEPT signals are handled and forwarded
a FLT-ACCEPT signal has been accepted (pulse)
a FLT-ACCEPT signal has been rejected (pulse)
a handshake signal has been received (hardware or software)

6.4 Backplane Connector (P2)

The Non-VME-Standard part of P2 (rows 'a' and 'c') is being used for distribution of the fiber link data to the fiber link transmitter modules.

The unipolar signals are driven by bus drivers 74ABT574, the differential signal is driven by a differential line driver DS90C031.

	а	С	
1	FIBER0	FIBER1	
2	FIBER2	FIBER3	
3	FIBER4	FIBER5	
4	FIBER6	FIBER7	
5	FIBER8	FIBER9	
6	FIBER10	FIBER11	
7	FIBER12	FIBER13	
8	FIBER14	FIBER15	
9	FIBER16	FIBER17	
10	FIBER18	FIBER19	
11			
12	GND		
13			
14			
15			
16			
17	BX-PULSE (a)	BX-PULSE (a)*	
18	BX-PULSE (b)	BX-PULSE (b)*	
19	BX-PULSE (c)	BX-PULSE (c)*	
20	BX-PULSE (d)	BX-PULSE (d)*	
21	BX-PULSE (e)	BX-PULSE (e)*	
22	BX-PULSE (f)	BX-PULSE (f)*	
23	BX-PULSE (g)	BX-PULSE (g)*	
24	BX-PULSE (h)	BX-PULSE (h)*	
25			
26			
27			
28			
29			
30			
31			
32			

6.4.1 Fiber Link Data Word

The 20-bit fiber link data words have the following format:

	19 16	15 8	7 0	
FLT EVENT	1000	00000000	FLT-BX #	
RANDOM TRG	1001	00000000	FLT-BX #	
VME TRG	1010	00000000	FLT-BX #	
LEMO1 TRG	1100	00000000	FLT-BX #	
LEMO2 TRG	1101	00000000	FLT-BX #	
LEMO3 TRG	1110	00000000	FLT-BX #	
LEMO4 TRG	1111	00000000	FLT-BX #	
COMMAND HIGH	0110	0 0 0 0 0 A A A	DATA	
COMMAND LOW	0111	00DDDDDD	00000000	
FLT #	0101	FLT #		
BX #	0000	00000000	BX #	

- A: command code
- **D:** daughter number

C: cluster number

7 Revision History

- **10-Jun-98:** Revision 3
- 05-Aug-98: Version control for XILINX chips added ('LOGIC', 'STATISTICS'), -> version 1
- 19-Aug-98: 'CLR_FLT' and 'VME_HSH' pulse generation changed ('LOGIC')
- 19-Aug-98: VME trigger logic changed (ignore trigger offset), -> 'LOGIC' version 2
- **14-Sep-98:** Trigger mask description corrected (in manual)
- **19-Sep-98:** Daughter command timing changed, -> 'LOGIC' version 3
- **10-Oct-98:** SHARC link algorithm changed, -> '**STATISTICS**' version 2
- 22-Oct-98: FLT number generation (SHARC link) corrected, -> 'STATISTICS' version 3
- 08-Dec-98: READOUT DURATION register changed to 9 bits
- 08-Dec-98: FLT-BX number handling corrected
- **08-Dec-98:** Trigger codes (SHARC link) changed, -> 'LOGIC' version 4
- 12-Jan-99: Readout Buffer Overflow generation corrected, -> 'LOGIC' version 5
- 28-Jan-99: Statistics and Histogram Timing changed, -> 'LOGIC' version 6
- 28-Jan-99: Statistics and Histogram Timing changed, -> 'STATISTICS' version 4
- 23-Apr-99: Synchronization of 'FLT_DIS' signal (LEMO) added, -> 'LOGIC' version 7
- **08-Jun-99:** Automatic test pulse generation feature added (in manual)
- 05-Apr-00: READOUT DURATION register changed to 14 bits, ->'LOGIC' version 8
- 27-Jun-00: Hardware Trigger 4 generates triggers as long as input is low, ->'LOGIC' version 9